Evolution of Massive Stars and Nucleosynthesis Alexander Heger Stan Woosley Weiqun Zhang Candace Joggerst Ken Chen Pamela Vo # Overview - A Brief History of Time Two Tales - The Life of a Massive Star - Nucleosynthesis in Massive Stars - Pop III Stars - Summary #### **Cosmic Dark Age** Formation of Micro-Galaxy The First Star within it The First Supernova Hubble Deep Field (after recombination) © Alexander Heger #### time ## Once formed, the evolution of a star is governed by gravity: continuing contraction to higher central densities and temperatures #### Nuclear burning stages | Fuel | Main
Product | Secondary
Product | T
(10 ⁹ K) | Time
(yr) | Main
Reaction | |------|-----------------|--|--------------------------|------------------------|--| | Н | He | ¹⁴ N | 0.02 | 10 ⁷ | 4 H → ^{CNO} 4He | | He 🖊 | 0, C | ¹⁸ O, ²² Ne
s-process | 0.2 | 10 ⁶ | 3 He ⁴ → 12 C 12 C(α,γ) 16 O | | C | Ne,
Mg | Na | 8.0 | 10 ³ | ¹² C + ¹² C | | Ne | O, Mg | AI, P | 1.5 | 3 | 20 Ne(γ , α) 16 O 20 Ne(α , γ) 24 Mg | | O | Si, S | CI, Ar,
K, Ca | 2.0 | 8.0 | ¹⁶ O + ¹⁶ O | | Si,S | Fe | Ti, V, Cr,
Mn, Co, Ni | 3.5 | 0.02 | ²⁸ Si(γ,α) | # Neutrino losses from electron/positron pair annihilation - Important for carbon burning and beyond - For T>10⁹ K (about 100 keV), occasionally: $$\begin{array}{c} \gamma \rightarrow \ e^+ + e^- \\ \text{and usually} \\ e^+ + e^- \rightarrow \ 2\gamma \\ \text{but sometimes} \\ e^+ + e^- \rightarrow \ \nu_{\overline{e}} + \nu_e \end{array}$$ The neutrinos exit the stars at the speed of light while the e^{+,} e⁻, and the γ's all stay trapped. - This is an important energy loss with $\varepsilon_v \approx -10^{15} \, (\text{T}/10^9 \text{K})^9 \, \text{erg g}^{-1} \, \text{s}^{-1}$ - For carbon burning and beyond, each burning stage gives about the same energy per nucleon, thus the lifetime goes down as T-9 The sun as seen by Kamiokande #### **Explosive Nucleosynthesis** in supernovae from massive stars | Fuel | Main
Product | Secondary
Product | T
(10 ⁹ K) | Time
(s) | Main
Reaction | |---------------------|-------------------|--|---------------------------|-------------|-----------------------------------| | Innermost
ejecta | <i>r</i> -process | - | >10
Iow Y _e | 1 | (n, γ), β ⁻ | | Si, O | ⁵⁶ Ni | iron group | >4 | 0.1 | (α,γ) | | 0 | Si, S | CI, Ar,
K, Ca | 3 - 4 | 1 | ¹⁶ O + ¹⁶ O | | O, Ne | O, Mg, Ne | Na, AI, P | 2 - 3 | 5 | $(\gamma,\alpha),(\alpha,\gamma)$ | | | | p-process
¹¹ B, ¹⁹ F,
¹³⁸ La, ¹⁸⁰ Ta | 2 - 3 | 5 | (γ ,n) | | | | v-process | | 5 | (v, v'), (v, e⁻) | #### **Presolar grains** #### Direct access to pristine SN nucleosynthesis? However: need to understand - chemistry - condensation - SN mixing - implantation #### "Relocation" of the γ-process γ -process can be made in implosive O shell burning, but peak abundance is **destroyed by SN** and **recreated further out** #### The Production of ¹³⁸La #### 25 Solar Mass Star s-only Yields #### 25 solar mass star s-process yields for different evolution stages #### Light Isotope Yields - $^{12}C(\alpha,\gamma)^{16}O$ #### Remnant Masses - NS or BH? ### GCE Application #### What input do we need for stellar models? - Initial composition isotopes(!) - Initial rotation, binary fraction and parameters - Nuclear physics reaction rates, nuclear data - Stellar physics "mixing", winds, binary evolution - Supernova physics energies, asymmetries, mechanisms, neutrinos, ... - Evolution of (isotopic) composition for different environments – star formation histories for dwarf galaxies vs. big ellipticals vs. spiral components, ... #### **Sun 2.0** #### **Sun 3.0** #### **Mass Loss by Giant eruptions?** # Mass Loss due to critical rotation? Eikstroem (2007) #### Black Holes and GRBs from Rotating Stars A small fraction of single stars is born rotating rapidly The fastest rotators evolve chemically homogeneously, become WR stars on the MS, and may lose less angular momentum. (Yoon & Langer 2006) ## **Massive Star Fates** as Function of Initial Mass (solar metallicity) # metals" # Nucleosynthesis from Stars $10-100 \ M_{\odot}$ #### Mixing in 25 M_o Stars Growth of Rayleigh-Taylor instabilities Interaction of instabilities (mixing) and fallback determines nucleosynthesis yields → Pop III stars show much less mixing than modern Pop I stars due to their compact hydrogen envelope **Simulations: Candace Church (UCSC/LANL T-2)** #### Fallback and Remnants → Pop III stars show much more fallback than modern Pop I stars due to their compact hydrogen envelope (Zhang, Woosley, Heger 2007) #### Supernovae, Nucleosynthesis, & Mixing #### Pop III Nucleosynthesis Mg yield (ejecta mass fraction) Heger & Woosley, in prep., (2010) #### Pop III Nucleosynthesis Grid data available at http://starfit.org #### **Comparison to Observational Data** Heger & Woosley (2008) #### Reconstruction of the IMF nucleosynthesis library find low-Z halo stars (HERES, SEGUE, ...) measure abundances (VLT, KECK, ...) Frebel, priv. com. (2007) #### Reconstruction of the IMF Dependence on observational abundance errors # Yield Data - Data base format for yield data (stardb) isotopes, radioactivities, elemental molar, ... as function on input parameters - Single star zonal outputs "user" can combine as needed (e.g., presolar grains) - Fit (and plot) tools starfit (starfit.org) - Observers: please provide data in log ε, better: mol fractions (mol/g) # Summary - Understanding stars and the origin of the elements requires input from many filed of physics - Stellar nucleosynthesis requires detailed and complete stellar models from formation though death and explosion - CCE models require integration of environment and stellar models - Useful constraints require on CCE detailed and accurate abundance measurements